REPÜLÉSTUDOMÁNYI KONFERENCIA 2010 SZOLNOK

REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK KÜLÖNSZÁM 2010. ÁPRILIS 16

Bauer Péter

HÁROM ÜZEMMÓDÚ KIBŐVÍTETT KALMAN SZŰRŐK REPÜLŐGÉP ORIENTÁCIÓJÁNAK BECSLÉSÉRE

BEVEZETÉS

Repülőgépek szabályozása vagy identifikációja során fontos a gép orientációját jellemző Euler szögek becslése. Ezek a szögek közvetlenül nem mérhetők, csak más mért jellemzőkből becsülhetők. Ebben a munkában feltételeztem, hogy képesek vagyunk a repülőgép gyorsulását, szögsebességét és a föld mágneses vektor komponenseit 50Hz, a gép (GPS) pozícióját pedig 4Hz gyakorisággal mérni (ahogy az a [7] projekt esetében alkalmazott szenzornál fennáll).

Mivel a szögek változását nemlineáris differenciálegyenlettel tudjuk leírni, ezért a szögek becslésére az úgynevezett kibővített Kalman szűrő (továbbiakban EKF) eljárás használható. Jelen munka célja az eddig publikált megoldásokra alapozva egy pontosabb és megbízhatóbb módszer kifejlesztése mely képes a kívánt szögeket a lehetséges legnagyobb pontossággal becsülni. Ennek érdekében először áttekintettem a témáról fellelhető szakirodalmakat.

[1]-ben egy quaternionokra alapozott EKF található, mely a szögsebesség, gyorsulás és mágneses mérés segítségével becsüli az Euler szögeket. A cikk azzal a feltevéssel él, hogy a gyorsulás szenzorok végig a föld gravitációs gyorsulását mérik. Repülés közben az inerciális hatások miatt ez nem igaz (lásd [6]), ezért hamis eredmények adódnak.

[2]-ben egy a forgatási mátrixra alapozott EKF-et ismertetnek, mely a szögsebesség, gyorsulás, sebesség és mágneses mérés segítségével állapítja meg az Euler szögeket. A sebesség mérése miatt a mért gyorsulás inerciális részének egy tagja korrigálható, így az eredmények javíthatók, de a megoldás még így is tartalmaz elhanyagolást.

[3]-ban a mért sebességeket felhasználva becsülik az Euler szögeket. Mivel a sebességeket nem mérjük, ezért ez a módszer használhatatlan.

[4]-ben a pozíció becslésére mutatnak be módszert a gyorsulás, szögsebesség és orientáció mérésével. Ez a megoldás az orientáció becslésére nem használható.

Az eddigi módszerek elemzése azt mutatja, hogy a gyorsulás mérések repülés közbeni felhasználása torzítja és hamisítja az Euler szögek becslését. Így a kérdés, hogy hogyan lehetséges a szögek pontosabb becslése a gyorsulásmérések nélkül? Az első ötlet a csak mágneses mérésekre támaszkodó becslés. Ekkor

azonban 3 mérésből (3 mágneses komponens) a 4 állapot (quaternion) nem megfigyelhető! Ezért valami más jellemző mérését kell felhasználni. Itt érdemes megjegyezni, hogy a szingularitások elkerülése érdekében a forgatási transzformáció quternion reprezentációját szükséges használni az Euler szögek helyett.

A becslés során egy másik felmerülő probléma a szögsebesség szenzorok konstans mérési hibájának (bias) figyelembe vétele. Ez az EKF-ben egyszerűen becsülhető, de a legyező mozgásra vonatkozóan óvatosnak kell lenni. Ugyanis, ha a repülőgép köröket ír le, akkor a szűrő hajlamos lehet a teljes legyező szögsebességet szenzorhibának becsülni. Ezért a legjobb lenne csak az orsózó és bólintó mozgásra vonatkozóan végezni a becslést. Ezt a kérdést a bevezetés utáni fejezet fogja vizsgálni. Ezt követően kerül sor az alkalmazandó EKF három üzemmódjának meghatározására kitérve a köztük való átkapcsolás feltételeire is. A következő fejezetben a szűrés matematikai háttere kerül bemutatásra a felhasználandó egyenletek rövid levezetésével. Ezt követi a szűrő(k) implementálásáról és teszteléséről szóló fejezet. Végül a cikk az elvégzett munka összegzésével és a továbblépési lehetőségek ismertetésével zárul.

A SZÖGSEBESSÉG SZENZOROK KONSTANS MÉRÉSI HIBÁI

Itt a vizsgálandó kérdés az, hogy a felszállás előtt földön, álló helyzetben kiszámolt szögsebesség átlagértékek (szenzor konstans hibák) mennyire térnek el a leszállás után számított átlagoktól? 9 repülés során gyűjtött adatfile-ból állt össze az 1. táblázat:

	P [fo	ok/s]	Q [f	ok/s]	R [fok/s]		
2009.05.	előtte	utána	előtte	utána	előtte	utána	
data2	0,0605	0,095	0,030	-0,008	-0,132	-0,157	
data3	0,054	0,039	-0,007	-0,003	-0,122	-0,185	
data4	0,027	0,043	0,000	-0,020	-0,107	-0,148	
data6	0,075	0,014	-0,033	0,014	-0,124	-0,127	
2009.10.	előtte	utána	előtte	utána	előtte	utána	
data1	0,115	0,081	-0,155	-0,060	-0,290	-0,313	
data2	0,103	0,082	-0,132	-0,091	-0,298	-0,308	
data4	0,083	0,064	-0,073	-0,048	-0,269	-0,233	
2009. 12.	előtte	utána	előtte	utána	előtte	utána	
data2	0,049	0,025	-0,200	-0,183	-0,490	-0,480	
data3	0,109	0,079	-0,293	-0,207	-0,467	-0,422	

1. táblázat Az átlagos szögsebesség szenzor konstans hibák

Az 1. táblázat azt mutatja, hogy míg az orsózó és bólintó szögsebességek esetén a szenzor konstans hibák a repülés előtt és után elég jelentősen eltérnek, addig a legyező szögsebesség esetén ez az eltérés sokkal kisebb. Ez szerencsésen egybeesik az igényekkel, és lehetővé teszi, hogy a szűrővel csak az első

két szögsebesség mérési hibát becsüljük lassan változó jellemzőként a harmadik hibát a kezdeti konstans értéken meghagyva.

A TERVEZENDŐ KÁLMÁN SZŰRŐ HÁROM ÜZEMMÓDJA

A szűrővel szemben követelmény, hogy mind a földön, mind a levegőben a lehető leghitelesebb mérések felhasználásával becsülje az Euler szögeket. Ehhez a gyorsulás és mágneses információk mellett rendelkezésre állnak a GPS pozíció és sebesség mérések is. Míg a földön álló, vagy lassan mozgó helyzetben a GPS mérések teljesen megbízhatatlanok (lásd 3. ábra), addig repülés közben a gyorsulásmérések lesznek hamisak. Ez lehetőséget biztosít a mérések megfelelő kombinálására figyelembe véve, hogy az EKF nagyon kezdeti érték érzékeny, ezért egy megbízható inicializáló rutin kialakítása is szükséges. Így végül a tervezendő szűrő három üzemmódja:

- MODE 1. kezdeti értékek (Euler szögek, szenzor hibák és a földmágnesesség vektor) meghatározása 4-10 másodperc adatgyűjtés (álló helyzetben) után
- MODE 2. becslés a földön álló, vagy lassan guruló helyzetben felszállás előtt / leszállás után a gyorsulás és mágneses mérések felhasználásával
- MODE 3. becslés, repülés közben a GPS (pozíció, vagy sebesség) és mágneses mérések felhasználásával

Az üzemmódok meghatározása után szükséges a köztük való átkapcsolás feltételeit is meghatározni.

A MODE $1 \rightarrow 2$ átkapcsolás egyértelműen megoldható egy timer alkalmazásával, mely 4-10 másodperc múltán elvégzi a rendszer átállítását. A végső kód verziókban az inicializálás 10 másodperc.

A MODE 2 \rightarrow 3 átkapcsolás már nem ilyen egyszerű. Legkézenfekvőbb lenne az abszolút GPS sebesség figyelése, de ebben a hirtelen zajok nagyságát nehéz előre becsülni és egy alábecsült kapcsolási határ hamis kapcsolásokat okozhat. A felszállást azonban nagyon jól jellemzi a maximális gázkar állás együtt az X tengely irányú gyorsulás hirtelen megugrásával (a gép elkezd gyorsulni). 10 mérés adatainak vizsgálatából a következő határgyorsulás értékek adódnak a felszállásra (mely alatti gyorsulás a felszállás előtt nem fordul elő):

		05. 2	009.			10. 2009.		12. 2009.		
adatfile	data2 data3 data4 data6				data1	data2	data4	data12	data2	data3
lim_ax [g]	-0.2	-0.32	-0.32	-0.23	-0.26	-0.26	-0.16	NaN	-0.441	-0.55

2. táblázat Határgyorsulás értékek

A 2. táblázat vizsgálata megmutatja, hogy -0.32g alatti a_x gyorsulás érték a 10-ből 7 esetben a felszállás megkezdését jelzi. Az utolsó három esetben a repülőgép kézzel való agresszív mozgatása előzte

meg a felszállást, ezért adódtak kisebb határértékek. Az ebből adódó probléma kiküszöbölhető, ha a gyorsulás értékét a felszálláskori gázadással (melynek határértéke 80%) együtt vizsgáljuk. A gép kézi mozgatása maximális gáz mellett ugyanis nem szokott előfordulni.

A MODE $3 \rightarrow 2$ visszakapcsolás leszállás után viszont már elvégezhető a GPS-el mért abszolút sebesség alapján. Repülés közben ugyanis ennek értéke 15-20 m/s így egy megfelelően alacsony határérték választásával a mérési hibák miatti téves kapcsolás elkerülhető. Végül ismét 10 repülés adataiból a határérték 0.2 m/s lett. Ez alatti értéknél a gép már biztosan a földön gurul.

Szükség van még a különleges esetek kezelésére:

- Felszálláskor a gyorsulás hamarabb megy -0.32g alá, mint ahogy az abszolút sebesség 0.2m/s fölé nőne. Ez hibás – még felszállás közbeni – MODE 3→2 kapcsolást eredményez. Ez a probléma egy timer alkalmazásával küszöbölhető ki, mely meggátolja a visszakapcsolást, ha a felszállás után nem telt még el két perc (egy átlagos repülés 6-10 perc).
- Kezelni kell még a GPS jel elvesztését / hibás jel vételét. Ez különféle feltételek vizsgálatával és szintén timer-el oldható meg. Ha repülés közben legalább 3 másodpercen keresztül nincs, vagy hibás a GPS jel, akkor visszakapcsolás történik MODE 2 üzemmódba. Ekkor a szögek becslése ugyan hibás, de sokkal jobb, mint a GPS nélkül divergáló szűrő esetében (csak mágneses mérésből az Euler szögek nem becsülhetők!).

A SZŰRŐ(K) MATEMATIKAI HÁTTERE

Elsőként érdemes az inicializáláshoz szükséges kifejezéseket levezetni abból kiindulva, hogy rendelkezésre állnak az álló helyzetben 4-10 másodperc alatt gyűjtött átlagos szögsebesség, gyorsulás és mágneses értékek. Az átlag értékek számítása rekurzív számtani közép formula alkalmazásával oldható meg:

$$S_{1} = a_{1}$$

$$S_{k+1} = S_{k} \frac{k}{k+1} + \frac{1}{k+1} a_{k+1}$$
(1)

– S_k a számtani közép aktuális értéke, a_k a legutolsó mért érték

Az átlagos gyorsulásértékekből a ϕ és θ Euler szögek számíthatók (2) használatával:

$$\begin{bmatrix} a_{x} \\ a_{y} \\ a_{z} \end{bmatrix} = \begin{bmatrix} -\sin\theta \\ \sin\phi \cdot \cos\theta \\ \cos\phi \cdot \cos\theta \end{bmatrix} \quad \theta = \arcsin(-a_{x}) \quad \phi = \arctan\left(\frac{a_{y}}{a_{z}}\right) \tag{2}$$

A ψ azimutszög azonban csak a mágneses méréseket is figyelembe véve határozható meg. A kiszámított ϕ és θ szögek segítségével már lehetséges a mért mágneses komponensek föld rendszerbe transzformálása (test rendszerből, mert ott mérünk).

1. ábra Elforgatott test rendszer a föld (North - East) rendszerben

Az 1. ábrát figyelembe véve a föld rendszer vízszintes síkjába eső két mágneses komponensből a mágneses északhoz képest mért azimutszög már számítható. Ezt a D deklinációval korrigálva megkapjuk a tényleges azimutszöget:

$$\psi' = \operatorname{arctg2}\left(\frac{-v_y}{v_x}\right) \quad \psi = \psi' + D$$
 (3)

A három szög felhasználásával a föld mágneses terének konstans v_x, v_y, v_z komponensei a mágneses mérések alapján meghatározhatók.

A konstans szögsebesség mérési hibákat egyszerűen a mért értékek átlaga adja. A kezdeti quaternion pedig a kezdeti Euler szögekből (4) szerint számítható (itt c() jelentése cos és s() jelentése sin).

$$\begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix} = \begin{bmatrix} c(\psi/2) \cdot c(\theta/2) \cdot c(\phi/2) + s(\psi/2) \cdot s(\theta/2) \cdot s(\phi/2) \\ c(\psi/2) \cdot c(\theta/2) \cdot s(\phi/2) - s(\psi/2) \cdot s(\theta/2) \cdot c(\phi/2) \\ c(\psi/2) \cdot s(\theta/2) \cdot c(\phi/2) + s(\psi/2) \cdot c(\theta/2) \cdot s(\phi/2) \\ s(\psi/2) \cdot c(\theta/2) \cdot c(\phi/2) - c(\psi/2) \cdot s(\theta/2) \cdot s(\phi/2) \end{bmatrix}$$
(4)

Az inicializálás után szükséges felírni a rendszer szűréshez használandó dinamikai egyenleteit, és belőlük előállítani a diszkrét idejű EKF-ben használandó mátrixokat. A quaternionok dinamikáját a szögsebességet figyelembe véve az (5)-beli elsőrendű differenciálegyenlettel tudjuk leírni. A valós rendszerben azonban a mért szögsebességeket konstans hibák (b = bias) és nulla várhatóértékű zajok (v)

terhelik. A tényleges dinamika leírásához ezekkel a mért szögsebességeket korrigálni szükséges. Az orsózó és bólintó szögsebesség mérési hibák dinamikája pedig egy nulla várható értékű zajjal megzavart rendszerként írható le. Mindez látható a (6) egyenletekben.

$$\dot{q} = \left(-\frac{1}{2}\right) \begin{bmatrix} 0 & P & Q & R \\ -P & 0 & -R & Q \\ -Q & R & 0 & -P \\ -R & -Q & P & 0 \end{bmatrix} q \quad ahol \quad q = \begin{bmatrix} q_0 \\ q_1 \\ q_2 \\ q_3 \end{bmatrix}$$
(5)

$$\dot{q} = \left(-\frac{1}{2}\right) \begin{bmatrix} 0 & P - b_P - v_P & Q - b_Q - v_Q & R - b_R - v_R \\ -P + b_P + v_P & 0 & -R + b_R + v_R & Q - b_Q - v_Q \\ -Q + b_Q + v_Q & R - b_R - v_R & 0 & -P + b_P + v_P \\ -R + b_R + v_R & -Q + b_Q + v_Q & P - b_P - v_P & 0 \end{bmatrix} q \quad v^q = \begin{bmatrix} v_P \\ v_Q \\ v_R \end{bmatrix}$$
(6)
$$\begin{bmatrix} \dot{b}_P \\ \dot{b}_Q \end{bmatrix} = \begin{bmatrix} v_{bP} \\ v_{bQ} \end{bmatrix} \rightarrow \dot{b} = v^b$$

A további levezetésekhez szükséges a szögsebesség mérési hibákat (orsózó és bólintó) és a szenzorzajokat külön vektorként kiemelni és a dinamikát tömör formában leírni:

$$\begin{split} \dot{q} &= \left(-\frac{1}{2}\right) \begin{bmatrix} 0 & P & Q & R-b_{R} \\ -P & 0 & -R+b_{R} & Q \\ -Q & R-b_{R} & 0 & -P \\ -R+b_{R} & -Q & P & 0 \end{bmatrix} q + \left(-\frac{1}{2}\right) \begin{bmatrix} -q_{1} & -q_{2} \\ q_{0} & -q_{3} \\ q_{3} & q_{0} \\ -q_{2} & q_{1} \end{bmatrix} b + \\ &+ \left(-\frac{1}{2}\right) \begin{bmatrix} -q_{1} & -q_{2} & -q_{3} \\ q_{0} & -q_{3} & q_{2} \\ q_{3} & q_{0} & -q_{1} \\ -q_{2} & q_{1} & q_{0} \end{bmatrix} v^{q} \quad ahol \quad \rho = \begin{bmatrix} P \\ Q \\ R \end{bmatrix} \\ \dot{q} = A_{1}(\rho)q + A_{2}(q)b + B_{1}(q)v^{q} \quad vagy \\ \dot{q} = A_{1}(\rho,b)q + B_{1}(q)v^{q} \quad ahol \quad A_{1}(\rho,b)q = A_{1}(\rho)q + A_{2}(q)b \end{split}$$
(7)

A folytonos idejű paraméterfüggő lineáris dinamikából a becsléshez szükséges diszkrét idejű lineáris dinamika kétféle közelítéssel állítható elő. Egyrészt a Heun, másrészt az Euler formula felhasználásával. A Heun formulával felírt egyenletek (8), (9), (10)-ben láthatók. (8) adja meg a kiindulást (7) megfelelő behelyettesítésével. Itt egyben látható, hogy a Heun formula miatt a zajvektorok k és k+1 pillanatbeli értékei is szerepelnek az egyenletekben. Ez a sajátság kétféleképpen kezelhető. Egyrészt fiktív

zajvektorok bemutatásával (9), másrészt fiktív, járulékos állapotváltozók bevezetésével (10). (9), (10)-ben látható, hogy quaternion dinamika esetén a Heun formula zárt alakú megoldása viszonylag egyszerű formában levezethető (q_{k+1} kifejezhető).

$$\begin{aligned} q_{k+1} &\approx q_k + \frac{\dot{q}_k + \dot{q}_{k+1}}{2} dt \\ q_{k+1} &\approx q_k + \frac{A_1(\rho_k)q_k + A_2(q_k)b_k + B_1(q_k)v_k^q + A_1(\rho_{k+1}, b_{k+1})q_{k+1} + B_1(q_{k+1})v_{k+1}^q}{2} dt \quad (8) \\ b_{k+1} &\approx b_k + \frac{v_k^b + v_{k+1}^b}{2} \\ q_{k+1} &= (M_{k+1}^+)^{-1}M_k^- q_k + \frac{dt}{2}(M_{k+1}^+)^{-1}A_2(q_k)b_k + dt(M_{k+1}^+)^{-1}B_1(\bar{q}_{k+1})\bar{v}_{k+1}^q \\ b_{k+1} &= b_k + d\bar{v}_{k+1}^b \\ ahol \quad M_{k+1}^+ &= I - \frac{dt}{2}A_1(\rho_{k+1}, b_k) \quad \acute{es} \quad M_k^- &= I + \frac{dt}{2}A_1(\rho_k) \\ \begin{bmatrix} q_{k+1} \\ b_{k+1} \\ x_{k+1}^h \\ x_{k+1}^h \end{bmatrix} = \begin{bmatrix} (M_{k+1}^+)^{-1}M_k^- & \frac{dt}{2}(M_{k+1}^+)^{-1}A_2(q_k) & \frac{dt}{2}(M_{k+1}^+)^{-1}B_1(q_k) & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_k \\ b_k \\ x_k^q \\ x_k^b \end{bmatrix} + \\ \begin{pmatrix} \frac{dt}{2}(M_{k+1}^+)^{-1}B_1(q_{k+1}) & 0 \\ 0 & \frac{dt}{2}I_2 \\ I_3 & 0 \\ 0 & 0 & I_2 \end{bmatrix} \begin{bmatrix} v_{k+1}^q \\ v_{k+1}^b \end{bmatrix}$$
(10)

(9) és (10) megoldhatóságának feltétele, hogy M_{k+1}^+ invertálható legyen. Ez a mátrix nemcsak invertálható, de ráadásul még egyszerű és zárt alakban is meghatározható az inverze. Így a zárt alakú Heun formulás megoldás jól alkalmazható az algoritmusban. Mivel a mikrokontrolleren való implementálás során fontos kérdés a rendszer dimenziója, ezért érdemes a 11 állapotú (10) helyett a 6 állapotú (9) dinamikai egyenletrendszer használata.

Az Euler formulás megoldás a (9)-hez hasonló egyszerű egyenleteket ad (11). Az itt látható $M_k^$ mátrix eltér a (9), (10)-ben használtaktól.

$$\dot{q} = A_{1}(\rho)q + A_{2}(q)b + B_{1}(q)v^{q}
\dot{b} = v^{b} \rightarrow b_{k+1} \approx b_{k} + dtI_{2}v^{b}_{k+1}
q_{k+1} \approx \underline{q_{k} + dtA_{1}(\rho_{k})q_{k}} + dtA_{2}(q_{k})b_{k} + dtB_{1}(q_{k})v^{q}_{k+1}
\underbrace{q_{k+1}}_{M_{k}^{-}q_{k}} = \underbrace{\begin{bmatrix} M_{k}^{-} & dtA_{2}(q_{k}) \\ 0 & I_{2} \end{bmatrix}}_{A_{k}} \begin{bmatrix} q_{k} \\ b_{k} \end{bmatrix} + \underbrace{\begin{bmatrix} dtB_{1}(q_{k}) & 0 \\ 0 & dtI_{2} \end{bmatrix}}_{B_{k}} \begin{bmatrix} v_{k+1}^{q} \\ v_{k+1}^{b} \end{bmatrix}$$

$$(11)$$

A rendszer dinamikáját leíró állapot dinamikai egyenletek előállítása után szükséges még a kimeneti (mérési) egyenletek meghatározása. Ezt a mágneses, a gyorsulás és a GPS azimutszög adatokra különkülön írtam fel. Mindhárom esetben az eredeti mérési egyenlet nemlineáris, melynek linearizálását adott munkapont körül a Jacobi mátrix kiszámításával lehet elvégezni. (12)-ben látható a föld mágneses komponensek transzformációja test rendszerbe, mely a mért mágneses adatokat adja.

$$\begin{bmatrix} H_{x} \\ H_{y} \\ H_{z} \end{bmatrix} = \begin{bmatrix} q_{0}^{2} + q_{1}^{2} - q_{2}^{2} - q_{3}^{2} & 2(q_{1}q_{2} + q_{0}q_{3}) & 2(q_{1}q_{3} - q_{0}q_{2}) \\ 2(q_{1}q_{2} - q_{0}q_{3}) & q_{0}^{2} - q_{1}^{2} + q_{2}^{2} - q_{3}^{2} & 2(q_{2}q_{3} + q_{0}q_{1}) \\ 2(q_{1}q_{3} + q_{0}q_{2}) & 2(q_{2}q_{3} - q_{0}q_{1}) & q_{0}^{2} - q_{1}^{2} - q_{2}^{2} + q_{3}^{2} \end{bmatrix} \begin{bmatrix} v_{x} \\ v_{y} \\ v_{z} \end{bmatrix} \implies \frac{\partial h_{1}(x)}{\partial x} = C_{1} = \frac{h_{1}(x)}{h_{1}(x)}$$

$$= 2\begin{bmatrix} q_{0}v_{x} + q_{3}v_{y} - q_{2}v_{z} & q_{1}v_{x} + q_{2}v_{y} + q_{3}v_{z} & -q_{2}v_{x} + q_{1}v_{y} - q_{0}v_{z} & -q_{3}v_{x} + q_{0}v_{y} + q_{1}v_{z} \\ -q_{3}v_{x} + q_{0}v_{y} + q_{1}v_{z} & q_{2}v_{x} - q_{1}v_{y} + q_{0}v_{z} & q_{1}v_{x} + q_{2}v_{y} + q_{3}v_{z} & -q_{0}v_{x} - q_{3}v_{y} + q_{2}v_{z} \\ q_{2}v_{x} - q_{1}v_{y} + q_{0}v_{z} & q_{3}v_{x} - q_{0}v_{y} - q_{1}v_{z} & q_{0}v_{x} + q_{3}v_{y} - q_{2}v_{z} & q_{1}v_{x} + q_{2}v_{y} + q_{3}v_{z} \end{bmatrix}$$

$$(12)$$

Itt H_x,H_y,H_z a test rendszerben mért mágneses komponensek.

A gyorsulás szenzorok földön álló helyzetben a gravitációt mérik, mely az alábbi nemlineáris mérési egyenletre és Jacobi mátrixra vezet. Itt a_x, a_y, a_z a test rendszerben mért gyorsulás komponensek.

$$\begin{bmatrix} a_{x} \\ a_{y} \\ a_{z} \end{bmatrix} = \begin{bmatrix} 2(q_{1}q_{3} - q_{0}q_{2}) \\ 2(q_{2}q_{3} + q_{0}q_{1}) \\ (q_{0}^{2} - q_{1}^{2} - q_{2}^{2} + q_{3}^{2}) \end{bmatrix} \implies \frac{\partial h_{2}(x)}{\partial x} = C_{2} = \begin{bmatrix} -2q_{2} & 2q_{3} & -2q_{0} & 2q_{1} \\ 2q_{1} & 2q_{0} & 2q_{3} & 2q_{2} \\ 2q_{0} & -2q_{1} & -2q_{2} & 2q_{3} \end{bmatrix}$$
(13)

A GPS azimut szögre vonatkozó egyenlet (ahogy az [1]-ben is megtalálható) és Jacobi mátrixa (14)ben szerepel. Az egyes üzemmódokban használt mérési egyenletek:

- MODE 2: (12) + (13)
- MODE 3: (12) + (14)

$$\begin{split} \psi &= \underbrace{\tan^{-1} \left(\frac{2(q_1q_2 + q_0q_3)}{q_0^2 + q_1^2 - q_2^2 - q_3^2} \right)}_{h_3(x)} = \tan^{-1} \left(\frac{C}{B} \right) \\ C &= 2(q_1q_2 + q_0q_3) \quad B = q_0^2 + q_1^2 - q_2^2 - q_3^2 = 1 - 2\left(q_2^2 + q_3^2\right) \\ \frac{\partial h_3(x)}{\partial x} &= C_3 = \frac{1}{1 + \frac{C^2}{B^2}} \frac{\partial}{\partial x} \left(C \cdot B^{-1} \right) = \frac{B^2}{B^2 + C^2} A \\ A &= \left[\frac{2q_3}{B} \quad \frac{2q_2}{B} \quad \frac{2q_1}{B} + \frac{C}{B^2} 4q_2 \quad \frac{2q_0}{B} + \frac{C}{B^2} 4q_3 \right] \\ C_3 &= \left[\frac{2q_3B}{B^2 + C^2} \quad \frac{2q_2B}{B^2 + C^2} \quad \frac{2q_1B}{B^2 + C^2} + \frac{4q_2C}{B^2 + C^2} \quad \frac{2q_0B}{B^2 + C^2} + \frac{4q_3C}{B^2 + C^2} \right] \end{split}$$

Foglalkozni kell még azzal, hogy a GPS mérésekből hogyan számítható ki a Ψ azimutszög. Egyrészt meghatározható két egymást követő pozíció koordináta párból (15) szerinti módon. Itt λ a szélesség, ϕ pedig a hosszúság koordinátája.

$$\psi_{k+1} = a \tan 2 \left(\frac{\cos \lambda_{k+1} \sin(\phi_{k+1} - \phi_k)}{\cos \lambda_k \sin \lambda_{k+1} - \sin \lambda_k \cos \lambda_{k+1} \cos(\phi_{k+1} - \phi_k)} \right)$$
(15)

Másrészt meghatározható a GPS által mért sebesség komponensekből (16) szerint ahol Evel és Nvel rendre a keleti és északi sebesség komponensek:

$$\psi_{k+1} = a \tan 2 \left(\frac{\text{Evel}}{\text{Nvel}} \right)$$
(16)

Kérdés, hogy melyik számítás a korrektebb, melyiknek mik az előnyei vagy hátrányai. Tekintsük ehhez a 2. ábrát. Itt a repülőgép két útvonalpont (P_k, P_{k+1}) közti pályája látható. Mivel a GPS vevő nem a gép súlypontjában van, ezért a súlypont elmozdulása és sebessége helyett a gép egy másik pontjának elmozdulását és sebességét méri. De ha igyekszünk a vevőt közel tenni a gép súlypontjához, akkor a gép forgásából adódó eltérések minimálisak. A másik szemléltetett eltérés, hogy ha csúszva repül a gép, akkor sebességvektora nem párhuzamos a test rendszer X tengelyével. Ezért a tényleges azimutszög helyett egy a sebességvektor által meghatározott azimutszög fog adódni. GPS koordinátákkal megadott repülési pálya követése esetén azonban ez éppen a pálya szögét adja meg. Mivel a pályakövetés az azimutszög szabályozásán keresztül oldható meg, ezért éppen célszerűbb ezt az azimutszöget mérni a tényleges (X tengelyhez viszonyított) helyett. Így a mért jellemző nevezhető *effektív azimutszögnek*. Kérdés még, hogy

hogyan viszonyulnak egymáshoz a pozícióból és a sebességből számított azimutszög értékek? Ezt a 3. ábra mutatja egy repülés során gyűjtött adatokra támaszkodva.

2. ábra A GPS által mért effektív azimutszög

3. ábra Számított azimutszög értékek a GPS pozícióból (kék) és sebességből (piros)

A 3. ábra jól mutatja, hogy felszállás előtt és leszállás után mind a GPS pozícióból, mind a GPS sebességből kapott azimutszög értékek használhatatlanok. Repülés közben azonban a kétféle számítás azonos szögértékeket ad. Ezek után a célszerűség dönti el, hogy melyiket használjuk. Mivel a sebességből való számítás megtehető az éppen aktuális értékekből és nem szükséges hozzá az előző GPS adatcsomag tárolása, ezért ennek használata mellett döntöttem.

Mivel az EKF egyenletei számtalan szakirodalomban (többek közt [8]) megtalálhatók, ezért ezek ismertetésére most nem térek ki. Végül kétféle szűrő került implementálásra, hangolásra és tesztelésre Matlab környezetben. Az első a redukált állapotterű Heun módszer szerinti (9), a második pedig az Euler módszer szerinti (11).

A SZŰRŐK IMPLEMENTÁLÁSA, HANGOLÁSA ÉS TESZTELÉSE

Egy EKF implementálása előtt szükséges a rendszer megfigyelhetőségének ellenőrzése. Ha ez teljesül, akkor lehetséges a kód elkészítése, behangolása (súlyozó mátrixokkal) és tesztelése. Először mindig a redukált Heun formulás módszer hangolása és tesztelése történt meg több lépésben, majd az eredmények összehasonlításra kerültek az Euler formulás módszerrel.

A megfigyelhetőség ellenőrzése

A mérési egyenletek (12,13,14) miatt a rendszer nemlineáris, a dinamikai egyenletek (9,11) miatt pedig még paraméterfüggő (szögsebesség) is. Így összességében egy paraméterfüggő nemlineáris rendszer megfigyelhetőségét kell ellenőrizni. A paraméterfüggés kiküszöbölhető, ha először nulla (legkritikusabb eset, lásd [4]) majd nem nulla szögsebességekre történik meg az ellenőrzés. Nemlineáris rendszer megfigyelhetősége kétféleképpen ellenőrizhető. Egyrészt a megfigyelhetőségi disztribúció kiszámításával és rangjának ellenőrzésével (lásd [4]), másrészt sok munkapontban linearizálva a rendszert a munkaponti lineáris rendszerek megfigyelhetőségé i csak griddeléssel (sok állapottér pontban való ellenőrzés) lenne megoldható, ugyanakkor a disztribúció paraméteres előállítása is igen nehézkes. Így végül a sok munkapontban való linearizálás és ellenőrzés mellett döntöttem. A munkapontok a repülőgép normál üzemében fellépő Euler szög hármasok által meghatározottak a (17)-beli szögértékeket figyelembe véve.

Az ellenőrzést a (17)-ben található szögek összes kombinációjára elvégeztem. Nulla szögsebesség mellett a rendszer mágneses + gyorsulás, illetve mágneses + GPS mérésekből megfigyelhető. Csak a mágneses mérésekből a rendszer nem megfigyelhető. Nem nulla szögsebesség mellett a rendszer már csak a mágneses mérésekből is megfigyelhetőnek adódott. A gyakorlati tapasztalatok szerint ez nem igaz, így itt eltérés van a linearizált és a nemlináris rendszer megfigyelhetősége közt. Ezért szükséges a GPS jel elvesztése esetén visszakapcsolni MODE 2 üzemmódba.

Tesztelés és összehasonlítás HIL adatokon

Először mindkét szűrőnek csak a mágneses + GPS mérésekre támaszkodó MODE 3 része került implementálásra és tesztelésre. A rövidebb futásidő érdekében mindkét kód csak minden második híváskor végez mérési korrekciót, egyébként csak a predikciós lépéseket számolja. Kivéve, ha éppen GPS adat érkezik, mert ekkor mindig elvégzik a korrekciót is.

A kódok első tesztelésére az MTA SZTAKI-ban felépített hardware in the loop (HIL) szimulátorban gyűjtött repülési adatokra támaszkodva került sor. A HIL szimulátor felépítése a Minnesota-i egyetemmel folytatott együttműködés keretén belül történt meg [9]. Fényképe a 4. ábrán látható.

4. ábra HIL elrendezés az MTA SZTAKI-ban

A HIL szimulátor lényege, hogy a valóság helyett egy Matlab szimulációban "repül" a repülőgép. A valós rendszer esetében szenzorral mért jellemzőket egy szimulációs blokk állítja elő és küldi ki a repülőgép valós fedélzeti számítógépe részére. A fedélzeti számítógép vezérlő jeleit pedig a repülőgép szervói helyett egy adatgyűjtő kártyába vezetjük, mely elküldi őket a Matlab szimulációnak. Így tulajdonképpen a fedélzeti számítógép egy virtuális repülőgépet vezet a valós helyett lehetőséget biztosítva így a szabályozók kockázatmentes tesztelésére (nem következhet be géptörés).

A HIL szimulációban gyűjtött adatok kiválóan alkalmasak az Euler szög EKF tesztelésére, mert a szögsebességek, gyorsulások, mágneses és GPS adatok mellett az Euler szögek is rendelkezésre állnak (a Matlab számítja őket). Így a becsült Euler szögek összevethetők a Matlabban számoltakkal (a becslési hibák számíthatók).

A tesztelések három gyűjtött adatfile felhasználásával történtek. Mivel a HIL szimulációban se zajok, se szenzor mérési hibák nincsenek, ezért ezeket külön hozzáadtam a mért jellemzőkhöz a reális tesztelés érdekében. (18) második sora mutatja a szögsebesség mérésekhez hozzáadott bias értékeket, első sora pedig a szűrőnek megadott kezdeti értékeket. Így az orsózó és legyező mozgás esetén lehetőség volt a szenzor konstans mérési hibák megfelelő becslésének tesztelésére is.

$$b_{P0} = -0.007 \text{rad/s} \quad b_{Q0} = 0.004 \text{rad/s} \quad b_{R0} = 0.011 \text{rad/s}$$

$$b_{P} = -0.01 \text{rad/s} \quad b_{O} = 0.008 \text{rad/s} \quad b_{R} = 0.011 \text{rad/s}$$
 (18)

A becslőnek a kezdeti Euler szög értékeket nulla hibával adtam meg, feltéve, hogy az addigi becslések jók (a HIL szimuláció a levegőben repülés közben indul).

A szűrők hangolása valós szenzorméréseken alapuló zajkovariancia mátrixokkal történt (természetesen ennek megfelelő zajt adtam hozzá a mért adatokhoz) (lásd [7]).

A Heun módszerrel kapott maximális abszolút becslési hibákat (fokban) a 3. táblázat tartalmazza. Mint látható, a legnagyobb eltérések az azimutszögeknél vannak, de a maximális 1,3°-os eltérés kiváló eredménynek számít. Ez látszik az 5-7. ábrákon is. A 8. ábrán pedig látható, hogy a szűrő a bias értékek becslését is jól oldja meg. P orsózó szögsebesség esetén -0.01, Q bólintó szögsebesség esetén pedig 0.008 környékére áll be elég gyorsan a becslés, melyek pont a megadott értékek.

[°]	phi	theta	psi
HILdata14	0.432	0.337	0.62
HILdata15	0.605	0.54	1.28
HILdata16	0.67	0.427	1.21

3. táblázat Maximum abszolút becslési hibák Heun módszerrel

5. ábra A becsült (estimated) és Matlabban számolt (measured) bedöntési szögek (HILdata16)

6. ábra A becsült (estimated) és Matlabban számolt (measured) bólintási szögek (HILdata16)

7. ábra A becsült (estimated) és Matlabban számolt (measured) azimutszögek (HILdata16)

8. ábra A becsült orsózó (roll) és bólintó (pitch) szögsebesség mérési hibák (HILdata16)

Az Euler módszert alkalmazó szűrővel hasonló jó eredményeket kaptam. A maximum abszolút becslési hibák a 4. táblázatban láthatók pirossal jelölve azokat az eseteket, amikor nagyobb maximális hibák adódtak. A táblázatból megállapítható, hogy az esetek többségében egy kicsivel nagyobbak a hibák.

[°]	phi	theta	psi
HILdata14	0.849	0.6836	1.807
HILdata15	0.68	0.4766	0.987
HILdata16	0.4797	0.576	1.1

4. táblázat Maximum abszolút becslési hibák Euler módszerrel

Tesztelés valós repülési adatokon

2009 októberében 3 tesztrepülést (data 1,2,4) végeztünk melyek során megtörtént a szögsebesség, gyorsulás, mágneses és GPS adatok gyűjtése. Az első két esetben a felszállást egy földi tesztelés előzte meg, amikor a felszálló pozícióhoz képest a repülőgépet kb. 45°-onként elforgatva pár másodpercig adatot gyűjtöttünk, majd továbbforgattunk. Így a 360°-os kör megtétele során 9 pontban történt álló helyzetben adatok gyűjtése. Ezt a 9 pontot a leszállás utáni földön állással együtt felhasználva összesen 10 pontban számíthatók az inicializáció során használt formulákkal az Euler szögek. Ez lehetőséget biztosít az EKF hangolására és ellenőrzésére (mivel ennek alkalmazásakor csak a kiinduló értékeket számolom az inicializációs képletekkel, a többit már a MODE 2 / 3 üzemmódok számítják). A háromféle adatfile-ra a Heun módszerrel kapott maximum abszolút eltérések (a számolt 10 pontban) az 5. táblázatban láthatók. Az adott adatfile-ra és szögre vonatkozó legnagyobb abszolút hibák (sárgával kiemelve) mindegyike 1° alatti. Ez kiváló eredmény.

	abszolút										
	becslési	1	2	3	4	5	6	7	8	9	10
	hiba [°]										
	phi	0,0927	0,1065	0,0460	0,0574	0,3149	0,0686	0,1437	0,0588	0,0011	0,0528
data1	theta	0,2121	0,1749	0,0029	0,1822	0,0583	0,0102	0,1858	0,0421	0,1211	0,1170
	psi	0,5513	0,2354	0,0290	0,1331	0,9590	0,2024	0,0496	0,2660	0,9425	0,0452
	phi	0,1970	0,0230	0,0551	0,1285	0,1490	0,1527	0,1581	0,0927	0,2874	0,0479
data2	theta	0,1151	0,1218	0,0082	0,1040	0,1363	0,4092	0,2153	0,1479	0,1304	0,0574
	psi	0,5114	0,0026	0,0667	0,0839	0,2916	0,4131	0,0184	0,2113	0,7633	0,1452
	phi									0,0284	0,3697
data4	theta									0,0945	0,1270
	psi									0,0004	0,8587
					fo	szállás e	lőtt				leszállás
											után

5. táblázat Euler szög becslés maximum abszolút hibái Heun módszerrel

A mért (10 pontban) és becsült Euler szögek a 9-11. ábrákon, míg a becsült szögsebesség mérési hibák a 12. ábrán láthatók.

9. ábra A becsült (estimated) és álló helyzetben számolt (measured) bedöntési szögek (data1)

10. ábra A becsült (estimated) és álló helyzetben számolt (measured) bólintási szögek (data1)

11. ábra A becsült (estimated) és álló helyzetben számolt (measured) azimutszögek (data1)

12. ábra A becsült szögsebesség mérési hibák (roll = orsózó, pitch = bólintó) (data1)

A 9-11. ábrák jól mutatják, hogy a teljes repülés után a szögek becsült értékei az álló helyzetben átlagból számolt értékekre állnak be. Ez azt jelenti, hogy a köztes becsült értékek is jók kell, hogy legyenek. A 11. ábrán az is látszik, hogy az azimutszög jól követi a GPS-ből számolt (from GPS) értékeket. A 12. ábrán pedig megfigyelhető, hogy a bias értékek becslése közel konstans, lassan változó és reális nagyságrendű.

Az Euler módszert használó megoldással igen hasonló eredmények adódtak, ezért csak a maximum abszolút becslési hibák táblázatát mellékelem (6. táblázat). Az esetek többségében az Euler módszer egy kicsivel nagyobb maximális hibákat adott.

	Abszolút becslési hiba [°]	1	2	3	4	5	6	7	8	9	10
	phi	0,0904	0,1017	0,0446	0,0589	0,3149	0,0666	0,1452	0,0615	0,0024	0,0553
data1	theta	0,2097	0,1691	0,0039	0,1798	0,0647	0,0064	0,1876	0,0508	0,1273	0,1134
	psi	0,5516	0,2312	0,0272	0,1261	0,9536	0,2016	0,0519	0,2608	0,9366	0,0499
	phi	0,1853	0,0226	0,0589	0,1323	0,1510	0,1538	0,1549	0,0912	0,2837	0,0528
data2	theta	0,1225	0,1178	0,0027	0,1047	0,1290	0,3917	0,2135	0,1416	0,1139	0,0648
	psi	0,5147	0,0030	0,0676	0,0846	0,2920	0,4072	0,0191	0,2121	0,7632	0,1440
	phi									0,0280	0,3653
data4	theta									0,0918	0,1371
	psi									0,0001	0,8551
felszállás előtt								leszállás után			

6. táblázat Euler szög becslés maximum abszolút hibái Euler módszerrel

Összehasonlítás egyszerűbb EKF-el

A [7] projekt keretén belül megtörtént az [1]-ben ismertetett EKF implementálása a repülőgép fedélzeti számítógépén. Így lehetőség van az új és elméletileg pontosabb (Heun formulás) EKF összevetésére a régi megoldással. Az összevetést a valós repülési adatokra végeztem el indirekt módon. Repülés közben ugyanis nem ismertek az Euler szögek. Így azonos adatfile-ra a kétféle becslőt lefuttatva (a régit repülés közben, az újat off-line) csak az látható, hogy mennyire térnek el egymástól az eredmények. Ha azonban megnézzük, hogy a régi becslő mennyire tér el a HIL szimuláció során a Matlab által számolt értékektől (amiket az új becslő szinte tökéletesen becsül) és ezt összevetjük a repülési adatoknál a két becslő közt látszó eltérésekkel akkor lehetséges következtetni az új becslő jobb / rosszabb működésére.

A régi becslő HIL Matlab adatoktól való eltérései a 13-15. ábrákon láthatók. A megfigyelt eltérések a következők:

- phi: A Matlab értékek nem nullák, míg a becsült értékek közel nullák. A Matlab értékek tranziense hihetőbb (kevésbé szögletes).
- theta: A Matlab értékek konzekvensen kisebbek, és néhol ellentétes irányban változnak
- psi: A Matlab értékek konzekvensen nagyobbak

13. ábra Bedöntési szög becslése a régi EKF-el (kék) HIL szimulációban (HILdata13)

14. ábra Bólintási szög becslése a régi EKF-el (kék) HIL szimulációban (HILdata13)

15. ábra Azimutszög becslése a régi EKF-el (kék) HIL szimulációban (HILdata13)

A repülési adatokra kapott kétféle becslés eredményei a 16-18. ábrákon láthatók. Az ábrákon látható eltérések az egyes szögekre:

- phi: Az új EKF-el becsült értékek nem nullák, míg a régi értékek közel nullák. Az új értékek tranziense hihetőbb (kevésbé szögletes).
- theta: Az új EKF-el becsült értékek konzekvensen kisebbek, és néhol ellentétes irányban változnak
- psi: Az új EKF-el becsült értékek konzekvensen nagyobbak

Mindez azt mutatja, hogy az új EKF-el kapott eredményektől ugyanúgy térnek el a régi eredmények, mint a Matlab által számolt HIL adatoktól. Ez valószínűsíti, hogy az új becslő pontosabb eredményeket ad.

16. ábra Repülés közben becsült bedöntési szög (SZTAKI = új EKF, UofM = régi)

17. ábra Repülés közben becsült bólintási szög (SZTAKI = új EKF, UofM = régi)

18. ábra Repülés közben becsült azimutszög (SZTAKI = új EKF, UofM = régi)

ÖSSZEGZÉS ÉS TOVÁBBLÉPÉS

Összegzésképpen elmondható, hogy a tesztelések alapján sikerült egy az eddigi megoldásokhoz képest pontosabb Euler szögeket becslő kibővített Kalman szűrőt kifejleszteni. Az új szűrő kétféle algoritmus (Heun és Euler formulás) szerint került megvalósításra Matlab-ban.

Mindkét megoldás hangolása és tesztelése először a HIL szimulációban gyűjtött, majd repülés közben gyűjtött adatokra történt meg. Az ellenőrzések azt mutatták, hogy minden esetben mindkét megoldás nagyon jó eredményeket ad.

A régi [1] megoldással összevetve úgy látszik, hogy sikerült annak hibáit az új módszerrel kijavítani. Így érdemes az új módszert a fedélzeti számítógépen is implementálni és tesztelni. Ehhez azonban el kell dönteni, hogy a Heun, vagy az Euler formula alapú módszer implementálása történjen meg. Az összevetések azt mutatták, hogy a két módszer közel azonos becslési hibákat és azonos futási időt is ad. A becslési eredményeket részletesebben vizsgálva a Heun módszer a rendszerben levő zajokat jobban elnyomja, ezért érdemes azt tesztelni (a zajok csökkentése a szabályozásban kiemelkedően fontos).

Így a fejlesztés következő lépése a Heun formula alapú módszer repülőgépen való implementálása és tesztelése.

FELHASZNÁLT IRODALOM

- JANG Jung Soon LICCARDO Darren: Automation of small UAVs using low cost MEMS sensor and embedded computing platform, Crossbow Technology Inc., San Jose, Califronia, 25th Digital Avionics System Conference, 15. October, 2006.
- [2] LIU Cheng ZHOU Zhaoying FU Xu: Attitude determination for MAVs using a Kalman filter, Tsinghua Science and Technology, Vol. 13. Nr. 5. pp. 593-597, October, 2008.
- [3] EHRMAN L. M. LANTERMAN A. D.: Extended Kalman filter for estimating aircraft orientation from velocity measurements, IET Radar Sonar Navigation, Vol. 2. (1), pp. 12-16. 2008.
- [4] BENZEMRANE Khadidja DAMM Gilney SANTOSUOSSO G. L.: Nonlinear adaptive observer for unmanned aerial vehicle without GPS measurement, ECC'09 proceedings, 23-26⁻ August 2009.
- [5] MAZZONI Thomas: Computational aspects of continuous-discrete extended Kalman-filtering, 23. 04. 2007.
- BAUER Peter: L_ahrs.pdf: documentation about the AHRS algorithm of UofM software, Systems and Control Laboratory, CARI, HAS, 2009.
- [7] BAUER Peter: Calculation of the mNAV S/N 0521019459 noise covariance matrices, Systems and Control Laboratory, CARI, HAS, 2009.
- [8] LANTOS Béla: Irányítási rendszerek elmélete és tervezése II, Korszerű szabályozási rendszerek, Akadémiai kiadó, Budapest, 2003.
- [9] UAV Research Group: http://www.aem.umn.edu/~uav/index.html