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IMPLEMENTATION AND UTILIZATION OF INVERSE DESIGN 

METHOD FOR STATIC PRESSURIZE IN CASCADE 

Todays, beside the continuously increasing scientific coverage of CAE1, it is widely spread in the all fields of the 

industry. The basic reason of this is that significant cost, capacity and time can be saved by the simulation driven 

product development. The CFD2 is a part of the CAE, and its effectiveness can be increased more by optimization 

algorithms. One of these technologies is the inverse design method, in which a predefined, in specific sense so 

called optimal flow condition has been imposed to recover the geometry belongs to that state. An inverse design 

method, developed at BME3 Department of Aeronautics, Naval Architecture and Railway Vehicles, has been used 

in the present work for investigating the way of how the static pressurise and mass flow rate can be maximised in 

a cascade on such a way that the flow on the suction side of the profile to be close, but certain safe distance far 

from the separation. The effect of the blade pitch is also included in the present investigation. 
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INTRODUCTION 

Computer modelling is used worldwide in different areas; many researches are in progress 

based on this technique [1][2][3][4]. In the past years, thanks to the advancement of the tech-

nology the computers achieved large computing capacity which made possible quick comple-

tion of huge number of calculations in short period of time. This made possible the development 

of numerical methods further. 

CFD is a contribution of the CAE which uses numerical methods and algorithms to solve prob-

lem related to fluid mechanics. As a result the properties such as density, velocity, temperature 

and pressure of the flow can be predicted at any discretized points of the flow field. Nowadays 

the processes of industry, agriculture, defence, meteorology, environmental protection, space 

sciences and academia benefit the most. 

In turbo machines with the help of this software, the properties of the flow and the emerging phe-

nomena around a body can be studied. The opportunity is given to test the parts in a virtual envi-

ronment, find missing or faulty elements which was not possible before. With these means time and 

cost can be saved, since the production of the optimized prototype is enough to test in practice. 

The recent studies are aimed on the possibility to combine the CFD with optimization methods. 

At the moment the most of these methods require time and huge computing capacity, because 

the direct optimization methods for instance require big amount of computing results to deter-

mine the direction of the optimization and the change of the geometry. Furthermore the required 

number of flow solutions increase with the number of with the number of design variables [5]. 

                                                 
1 CAE: Computer Aided Engineering. Computer software used for engineering analysis tasks 
2 CFD: Computational Fluid Dynamics. A branch of fluid dynamics which uses numerical analysis to solve prob-

lems in fluid flow 
3 BME: Budapesti Műszaki és Gazdaságtudományi Egy. (Budapest University of Technology and Economics) 



Nomenclature 

Latin letters and symbols: 

 c  [m, m/s] chord, sound speed; 

 
P

C  [-] pressure coefficient; 

 
P

C  [-] pressure coefficient; 

 p [Pa] pressure; 

 M [-] Mach-number; 

 R [J/kg/K] specific gas constant; 

 u, v [m/s] axial and tangential velocity component; 

 a, b [-] constant used in Stratford’s formula; 

 x [-] distance from the leading edge; 

 T [K] temperature; 

 U [-] vector of conservative variables; 

 F, G [-] vector of inviscid fluxes; 

 E [J/kg] total energy; 

 H [J/kg, -] total enthalpy, numerical flux; 

 W [m] variables of the characteristic vector; 

 Vn [m/s] velocity, perpendicular to the cell face; 

 t [s] time; 

 Vs [m/s] velocity, parallel to the cell face; 

 Hn [-] normal directional flux; 

 x, y [m] Cartesian coordinates. 

Greek letters: 

 α [deg] angle of attack; 

 αk [-] Runge-Kutta constant; 

 γ [-] ratio of specific heats; 

   [Ns/m2] dynamic viscosity; 

   [m2/s] kinematic viscosity; 

 ρ [kg/m3] density; 

 Γ [m] length of the cell’s wall; 

 Ω [m2] control area; 

 λn
(I) [m/s] normal eigenvalues; 

 Δ [-] difference; 

   [-] static pressure ratio. 

Indexes: 

 x, y axes (in the Cartesian coordinate system); 

 0 total parameters; 

 1 flow parameters; 

 n+1 wall adjacent characteristic in the next time step; 

 n-1 wall adjacent characteristic in the previous time step; 

 * wall adjacent extrapolated parameters from the interior; 

 i, j spatial variables; 



 in, out inlet, outlet; 

 l local variables; 

 m values for the location of the pressure increase’s start; 

 n variables perpendicular to the wall; 

 o initial parameters; 

 to, stat total, static; 

   parameters at infinite far from the investigated point. 

Abbreviations: 

 BC Boundary Conditions; 

 PBC Physical Boundary Conditions; 

 NBC Numerical Boundary Conditions; 

 MBC Mirror Boundary Conditions; 

 CAE Computer Aided Engineering; 

 CFD Computational Fluid Dynamics; 

 MUSCL Monotone Upstream Schemes for Conservation Laws; 

 L left side of cell’s face; 

 R right side of cell’s face; 

 Re Reynolds-number; 

 RK Runge-Kutta; 

 ss, ps suction side, pressure side. 

Inverse Design for Aeronautical Applications 

During the inverse design method, the modification of the starting geometry is based on a set 

of pre-defined variables. These methods are become more attractive amongst other optimization 

methods because of the used fast and robust algorithms. The wall modification requires less 

flow solutions for inverse design than other optimization techniques. Hence, the required com-

puter resources are lower and the inverse design is very innovative to be used in practice. How-

ever, the drawback of this method is that a goal pressure or velocity distribution must be given, 

which the solution of the inverse design method will correspond with. It can be difficult to 

define these expected distributions which will satisfy all design goals. One cannot guarantee 

that the prescribed distribution will not result in a mechanically wrong, unachievable geometry 

where the geometry intersects itself. Also even if the geometry is acceptable the outlet edges 

thickness can be zero, or can stay open which is not achievable in practice. 

The iterative procedure of the inverse design method, at first, requires an initial geometry and 

a required pressure/velocity distribution along the wall to be modified. The method will modify 

this geometry until it reaches the goal pressure/velocity distribution. The prescribed distribution 

can be the goal function of an optimization technique or a solution of an industrial experience 

or theory for example. The iterative cycle starts with a direct analysis of the inviscid Euler 

solver in the present case on the initial geometry. Upon completing the convergence criteria if 

the target conditions are not met, new boundary condition is defined at the solid boundary to be 

inverse designed. The wall become open locally as inlet or outlet depends on the pressure dif-

ference between the boundary and the computational domain. The outcome is a velocity distri-

bution along the wall which does not necessarily parallel with it. The final step of the iterative 



cycle is that the wall become parallel with the local velocity vector corresponds to the new 

streamline of the flow field. These steps are repeated until the target distribution reached and 

the new geometry is available [6]. 

The one of the key points in fluid dynamic related engineering phenomena is that the flow 

may/should close, but certain distance far from the separation to minimize the losses meanwhile 

it is distorted as much as possible to reach design specifications if it is the case. Hence, the 

methods for predicting separation are described in the following chapter to be considered after-

wards in the inverse design method. 

SEPARATION PREDICTION METHODS 

There are several existing methods for predicting separation as Goldschmied, Stratford, Head, 

Cebeci-Smith for instance. The accuracies of these models were studied several times. Investi-

gations show that the operation of Goldschmied method is unreliable in certain cases, while the 

other three leads to similar results. The method of Stratford, Head and Cebeci-Smith are ac-

ceptable and the Cebeci-Smith is the most accurate followed by Head’s method. However, 

Stratford’s predicts the separation slightly early. Due to the suitable accuracy, robustness, sim-

plicity and representing “the worst case” condition, Stratford method was used to determine the 

pressure distribution during the inverse design in the present case. The base of the Stratford 

method is to determine a positive pressure gradient where the boundary layer to be close, but 

certain safe distance far from the separation [6]. 

Stratford’s Separation Prediction Method 

A suction side pressure distribution of an airfoil is shown in Fig. 1. The pressure decreases until 

the x0 point where the pressure increase starts. The pressure needs to increase until it reaches 

the pressure value at the trailing edge of the pressure side. 

 

Figure 1. Pressure distribution over the equivalent Stratford plate [8] 

In the Stratford’s simplified model the static pressure section is followed by the pressure in-

crease from the x0 point as it is shown in Fig. 2. 



 

Figure 2. Stratford’s simplified view of the front of the airfoil [8] 

Stratford derived an empirical formula by measurement over a flat plate to predict the point of 

the separation in an arbitrary decelerating flow at around the Reynolds-number range 10E6 [12]: 
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Where the canonical pressure distribution is the following [13]: 
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To calculate the dynamic viscosity Sutherland’s method was used [14]:  
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where 
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10458.1C 6

1

  and K4.110S  . 

If in the flow the pressure rise begins at the point x0 (where the pressure is minimal and the 

velocity is maximal and the 0 is the subscript of the parameters belongs to that condition) the 

equations (1) left-hand side starts from a zero value and grows continuously. When S limiting 

values is reached the separation occurs.  

If S is held at the limiting value of 0.39, then equation (1) forms an ordinary differential equation 

for  xCp . Equation (1) shows that the flow described by it is ready to separate on every point. 

The solution for equation (1) presented by Stratford follows [12]: 
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Figure 3. Stratford limiting flows at two values of unit Reynolds number [12] 

In this two-part solution, x0 is the location of the start of the pressure increase, 


00
0

xu
Re  , x 

is the distance from the start of the flow, which starts as a turbulent flow over the wall. The 

value of “n” is defined as 6 by Stratford. 

In the equation a and b are constants values and required so the steepness of the two curves 

match in the connection point. 

Equation (5) describes the first section of the flow while equation (6) describes the second. The 

above said two equations were computed and shown. 

The actually presented method is used for the determination of pressure distribution at maxi-

mum lift force for given far field conditions. The following equation is applied to determine the 

integral of the pressure distribution around the profile [13]: 
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where p is the static pressure at the given location of the wall and the other variables are corre-

spond to the free stream conditions (far upstream (total temperature and pressure) and far down-

stream (static pressure) of the cascade). The connection between )(xC p  and )(xC p  is given by 

equation (8) [13]. 

Equation (5) 

Equation (6) 
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The pressure coefficient at the minimum pressure (p0) is given by:  

 
2

0

2

0

2

0

0,pp
Mp7.0

pp

Mp5.0

pp

u
2

1

pp
CC

























 (9) 

where 0p  and maximum velocity u0 are constants from the leading edge of the suction side 

until the start of the positive pressure gradient. The 0M  Mach number is calculated by: 
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0T , 0  and 0u are obtained by the energy equation of the isentropic flow and ideal gas law: 
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The total quantities correspond to the given operational and inlet (far field) boundary conditions. 

The way to determine pressure distribution starts with specifying a 0p . The parameters belongs 

to that 0p  can be calculated from the equations (10)(13) with using static downstream pressure 

for determining M . Next step is to find x0 which gives back the required pressure at the trailing 

edge with the use of Stratford’s equations (5) and (6). Stratford’s limiting pressure distribution 

till the required pressure on the trailing edge of the blade is the output of the procedure [8]. 

THE DASFLOW 

The DASFLOW is an in-house Euler solver developed at BME, Department of Aeronautics, 

Naval Architecture and Railway Vehicles. This software is used in the present investigation for 

numerical flow modelling. 

Governing Equations 

The unsteady 2D compressible Euler equations in Cartesian coordinate system have been con-

sidered for the mathematical model for the fluid dynamics: 
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where yx, and 
t . The conservative variables and convective fluxes are given by: 
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The   is the density, u  and v  are velocity in Cartesian coordinate system and p  is the static 

pressure. The total enthalpy and energy are given by (16). 
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The   is the ratio of specific heats [7]. 

Boundary Conditions 

The numerical treatment of the boundary conditions influences the convergence properties and 

the accuracy of the results in solving partial differential system of equations. In case of a hyper-

bolic equations, if Ne is the number of partial differential equations and Np < Ne is number of 

Physical Boundary Conditions (PBC), then Nn = NeNp Numerical Boundary Condition (NBC) 

needs to be defined for the system to be well posed. The PBC grants the existence and the unicity 

of the solution while the NBC grants the exit of the perturbations from the system without reflec-

tion. For these reasons the correct combinations of the NBC and PBC should be used [13]. 

The simplified characteristic form of the governing equations can be expressed by the outward 

pointing normal components of the computational cell as follows [7]: 
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Where n is the unit vector perpendicular to the computational cell’s wall, Vn is the component 

of the velocity vector perpendicular to the cell wall, Wn is the characteristic variable into the 

direction n (the invariants of the Riemann equation) and (c) is the speed of sound. The Wn 



invariants are constants on their characteristic curves. The direction of the characteristic curves, 

the direction of wave propagation (Vn, Vn, Vn+c, Vn-c) dependent of the Vn  and the local speed 

of sound. On the boundaries, the number of the PBC is equal to the number of the negative 

eigenvalues. These conditions correspond to the input characteristics from the outside of the 

computational domain. The NBC becomes necessary because for the actual problem solving, 

conservative variables are used instead of Riemann variables. The general practice is to com-

pute the incoming Riemann invariants by the PBCs meanwhile the outgoing ones are extrapo-

lated from the interior of the computational domain. 

The detailed description of the inlet outlet solid wall boundary conditions in theoretical manner 

are found in [13]. 

Discretization 

Integrating system equation (14) over a control volume   which is bounded by interface 

and applying the Gauss’ divergence theorem gives [7]: 
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where n is the local outward pointing unit normal vector. yx eGeFH
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where 
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Finite volume method was used to achieve a discrete form. The second integral in (18) can be 

replaced with the summation over the number of faces 
fN  of the control volume

ji, . The 

semi-discreet from of eq. (18) can be written for the cell j: 
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where,  
kjnH
,

 is the total inviscid flux normal to the cell interface. jU  is the vector of the 

conservative variables. k,j   is the length of the wall k belongs to cell j. During discretization 

the value of  
kjnH
,

 can be characterized with a flux function: nĤ  which takes into considera-

tion the sign of the Jacobi matrices, in other words the relevant propagation directions: 

  RL
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The functions  RL

n UUH ,ˆ  can be calculated by a special averaging of the left and right states 

of the cell face [13]: 
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In ideal gas – based on Roe’s work – nD̂  matrix equals with the Jacobi matrix, when it is 

expressed as a function of ̂ , û , v̂ , and 0ĥ  variables. These variables are weighted values with 

the square root of the density. 

Roe’s approximation method is less dissipative and closely linked with the characteristic 

transport, therefore this is one of the most effective Riemann-solver. It has an excellent discon-

tinuity-capturing property including shear waves. However, this flux can produce non-physical 

expansion shocks, which violates the entropy conditions. This can be avoided by modifying the 

eigenvalues of the nonlinear fields based on Yee, as it is applied in the present case [13]. 

MUSCL (Monotone Upstream Schemes for Conversation Laws) approach is used for higher 

order spatial discretisation. It means a linear or higher order approximation of the conserved 

variables over the cell instead of constant ones. The mathematical representation starts with the 

Taylor-series expansion around the point i [13]: 
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x is the spatial direction equals with the local coordinate in every direction. After discretization 

and integration the following equations can be written: 
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where 
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(i+1)-th points, the left and right side conditions exactly at the cell boundary are marked with 

L: Left and R: Right. 

The  =1/3, which corresponds to the third order spatial accuracy of the 1 dimensional prob-

lem. In case of higher order discretization schemes, non-physical oscillation can appear in the 

solution because of the shock wave, discontinuity and sudden changes. Mulder limiter has been 

used in the present case to preserve the monotonicity of the scheme [13]: 
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To solve the equation above the non-linear, multi-step time integration method is used based 

on Runge-Kutta (RK). The advantage of the method is that the solution is achieved with the 

least computational cost with high stability. The 4th ordered Runge-Kutta method is applied 

here to determine the time derivatives of the conservative variables. 

The detailed description of the finite volume method is found in [9] and the analysis of the 

numerical method is described in [10]. 

The Wall Modification Method 

The last step of the inverse iteration cycle is the modification of the geometry. The velocity 

distribution is given as an output of the permeable or opening wall based direct analyses. In the 

new position, the wall is set to be parallel with the local velocity vector by moving the coordi-

nates only in y direction [6]: 
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u and v are the components of the velocity vector in the Cartesian coordinate system (see Figure 

4). The wall modification starts from the leading edge till the trailing edge. [6] 

 

Figure 4. Schematic of the wall modification process based on the local velocity vector [13] 

For the invers design’s wall-modification, pressure or velocity distributions are required. Here-

inafter the goal is to determine a pressure distribution from Stratford’s method, which can be 

used in inverse design to optimize a blade profile in a cascade. 

IMPLEMENTATION OF STRATFORD’S METHOD 

The goal of this investigation is to define the optimal pressure distribution where the static 

pressurise and the mass flow rate over the cascade is maximal. For this purpose Stratford’s 

method was used, which was described previously. 

The Stratford’s method was implemented in an Excel table. It was selected as an initial compu-

tational environment, because every step can be observed and any possible error become visible 

immediately. Concerning the conditions for the application of Stratford’s method, the flow is 

supposed to be incompressible, boundary layer is turbulent and the Re is 106-107. At the start 

of the process the input table needs initial parameters such as the total pressure ( top ) and tem-

perature ( toT ) at the upstream of the blade row, static pressure at the downstream of the cascade 



and the pressure coefficient )( PC . Then the static parameters ( 0Re , 0p , 0M , 0T , 0  and 0u ) 

are calculated by the Excel.  

Afterwards the points of the geometry (x) over the suction side are defined from the leading 

edge towards the trailing edge. In the following step the location of the pressure increase have 

to be defined (x0). Hence, first, the value of (x0) must be shifted - with sufficient accuracy - so 

that the pressure on the trailing edge will equal with the expected outlet static pressure down-

stream of the cascade. The Excel then calculates the canonical pressure coefficient from Strat-

ford’s equations. Finally the pressure and pressure coefficient are determined in every point.  

The following equations describe the steps to determine the “a” and “b” constants for the ca-

nonical pressure distribution: 

Eq. (5) when n = 6: 
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in term of (x) 
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Differentiating eq. (5) and (6) with respect to (x): 
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In the Excel table: 
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With more pressure coefficient an array of curves are given to the same trailing edge pressure. 

The final step is to determine which curve has the largest closed area. It is the optimal suction 

side pressure distribution due to the largest work on the flow. 



The block diagram of the calculation process for one Cp is found in Figure 5. With the settings 

of initial input parameters different conditions can be considered and the length of the profile’s 

chord can be set to a preferred value. 

 

Figure 5. The process of determining the pressure distribution for one Cp  

In the future a program can be written to speed up the iteration process and find the location of 

the pressure increase with better accuracy. 

The array of pressure distribution curves with the inlet total pressure 107,853 Pa, inlet total 

temperature 298.42 K and static outlet (trailing edge) pressure 101,325 Pa is shown in Figure 

6. The pressure coefficients are in the range of [2.5, 0.5]. The curve with the largest area 

under it is coloured red. 

  

Figure 6. The pressure distribution for different pressure coefficients 



EVALUATION OF THE RESULTS 

Comparison of profiles with different pressure distribution 

For comparison three different pressure distributions was selected. The curve with the largest 

area which in theory is the optimal pressure distribution for the inverse design and as a result 

will redirect the flow towards axial direction with the best efficiency is Cp=2.1. The other two 

pressure distributions belongs to one of the lowest Cp=2.5 and highest feasible pressure coef-

ficient Cp=0.6. 

For initial parameters as mentioned in the previous chapter are: Papto 853,107  total pressure, 

KTto 42.298  total temperature, Pap 325,101  trailing edge static pressure. The flow angle 

(with respect to the horizontal direction) is rad785398163.045    in the present investi-

gation. 

The results of the inverse design method are discussed in the following subchapters. 

Test Scenario Cp = 0.6 

 

Figure 7. Streamlines over cascade at Cp = 0.6 

Regarding the results at Cp = 0.6, the flow was redirected minimally the angle from the axial 

direction is 38.66° (see Figure 7). The mass flow rate is: mskg //44.90 2 . 



 

Figure 8. Pressure distribution over cascade at Cp = 0.6 

The pressure increase is smallest among the investigated cases. The inlet static pressure is

Papin 869,100  (see Figure 8). The static pressure rise in this case is 00454.1 . The low-

range pressure zone on the suction side is large. With this kind of properties the pressure in-

creases rather at the last section of profile which is due to the slightly negative angle of attack 

also. The Mach number distribution is shown in Figure 9. which confirms also the low level 

diffusivity. 

 

Figure 9. Mach-number distribution over cascade at Cp = 0.6 

  



Test Scenario Cp = 2.5 

 

Figure 10. Streamlines over the cascade at Cp = 2.5 

Closing towards the optimal pressure distribution the flow was more redirected, this is the result 

of the thickened profile and larger curvature (see Figure 10). The direction of the flow at the 

exit of the cascade measured from axial direction is 21.37°. 

 

Figure 11. Pressure distribution over cascade at Cp = 2.5 

The mass flow increased to: mskg //72.110 2 . The static pressure increases more, it is 

Papin 925,96 . The static pressure rise in this case is 0454.1 (see Figure 11). The low-

range pressure zone is the smallest between the investigated cases. This design uses the largest 

part of the profile, because the start of the pressure increment here starts the earliest. The Mach 

number distribution is shown in Figure 12. 



 

Figure 12. Mach-number distribution over cascade at Cp = 2.5 

Test Scenario Cp = 2.1 

 

Figure 13. Streamline distribution over cascade at Cp = 2.1 

Concerning the simulation results at Cp = 2.1, the flow suffers from a larger diversion than in 

the previous case. The flow angle from the axial direction is 16.59° (see Figure 13). 



 

Figure 14. Pressure distribution over cascade at Cp = 2.1 

With the optimal pressure distribution (the largest area below the pressure distribution curve) 

the flow has the maximum deflection. The mass flow rate is mskg //45.113 2 . The pressure 

increment is the largest from the investigated scenarios (see Figure 14). The inlet static pressure 

is Papin 366,96 . The pressure rise in this case is 0508.1 . The low pressure zone on the 

suction side is slightly larger than in the previous case because the pressure increment starts 

later. The Mach number distribution is found in Figure 15. 

 

Figure 15. Mach-number distribution over cascade at Cp = 2.1 

The Effect of Blade Pitch 

In this subchapter the effect of the distance between the profiles will be investigated. Because 

of the large area between the blades in Fig. 7, the flow can pass the blades without major diver-

sion and to achieve higher static pressure rise, the blade profiles has to thicken. The distance 



between the profiles will be reduced to determine the consequence and find the most effective 

distance. The distance is normalized value in connection with the chord. 

The Initial Blade Distance: Δy = 0.667, Cp = 2.1 

 

Figure 16. Pressure distribution at the initial blade distance 

The properties of this design have been discussed in the previous chapter. The pressure distri-

bution belongs to the Cp = 2.1 is shown in Figure 16. The pressure distribution determined by 

Stratford’s method shows great similarity with the results gained after the inverse design. The 

inverse design method works as expected. As said in a previous chapter the Reynolds number 

must be in the range of 10E6. In this case the Re = 5.226E6 which is in the limits. 

Blade distance is Δy = 0.517, Cp = 2.1 

 

Figure 17. Pressure distribution at 22.5% narrowed cascade 

The distance is reduced by 22.5% to investigate the effect of narrowed flow section. 
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Figure 18. Streamlines at 22.5% narrowed cascade 

With narrowed flow section the mass flow also slightly increased mskg //74.113 2 . The blade 

geometry is slightly changed to adapt better to the target pressure distribution. The rear part 

becomes more axial. The angle of the flow from the axial direction is 11.88° (see Figure 18). 

 

Figure 19. Pressure distribution at 22.5% narrowed cascade 

The pressure increase is also improved (see Figure 19). The inlet pressure Papin 233,96  The 

static pressure rise is 053.1 , which is a minimal difference in comparison. 



 

Figure 20. Mach-number distribution at 22.5% narrowed cascades 

The Mach-number reduced slightly over the profiles (see Figure 20). 

The further pitch reduction with Δy = 0.367 showed unexpected blade shape, so it is not pre-

sented here. 

However, it can be concluded that there is a certain blade pitch which, together with the inverse 

design method, provides the maximal flow turning, mass flow rate and static pressure rise at 

the given boundary conditions. 

CONCLUSION 

An inverse design based optimization method has been used and tested in the present case for 

determining the suction side profile of a blade in a cascade corresponds to the maximal flow 

turning in axial direction, the maximal mass flow rates and the maximal static pressure rise. 

The applied DASFLOW software has been developed at BME, Department of Aeronautics, 

Naval Architecture and Railway Vehicles. 

At the start of the investigation an initial profile had to be considered, which will make up the 

cascade. For this purpose the NACA 65-(18)10 profile [11] has been used. 

The second step was to determine a suction side pressure distribution, which is close, but certain 

safe distance far from the separation in case of positive pressure gradient. Stratford’s separation 

prediction method was used to determine the pressure distribution. This method was imple-

mented in an Excel table. The required pressure distributions belong to different flow conditions 

are determined by the table. 

The next step was to run the inverse design solver with expected pressure distributions for the 

profile at different pressure coefficients. 

The program with initial blade pitch was executed with three pressure coefficients. The one of 

them is with the largest area under the curve (Cp = 2.1). The other two were the curves with 

minimum area below the pressure distribution (Cp = 1.6 and 2.5). The results show that with 



increasing of the pressure coefficient starting from its the minimal value, the largest static pres-

sure rise and mass flow rate can be achieved at the optimal value. The flow turning into the 

axial direction is also the highest one in this case. The pressure coefficient (Cp = 2.1) belongs 

to that conditions. 

The effect of the blade pitch (narrowed flow section) was also investigated with the same 

method as mentioned above. The results showed that with the decreasing of the distance be-

tween the profiles there should be an optimum, where the flow turning into the axial direction, 

the mass flow rate and static pressure rise are the highest ones. 

It is important to mention that the profiles were only investigated from fluid mechanics point 

of view, the mechanical stress analysis requires further work. 

The inverse design method can be used to find an optimum design - belongs to the application 

range of the method - which satisfies the most expected conditions (mass flow rate, static pres-

sure rise and flow turning) in the present case. However, in that case other properties of the profile 

can deteriorate. 

For this work the goal was to combine a separation prediction method with an inverse design 

method. This is achieved and the flow behaviour is understood. To utilize the results of the 

present investigation in the development of improved cascades the behaviour of the flow and 

the interaction between the flow and surface must be understood deeper. The presently used 

method can be improved further with the extension to compressible and viscous flow. In the 

future the method can be combined with 3D modelling software to automatically make a blade, 

which can be investigated by CAE software. 
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INVERZ TERVEZŐELJÁRÁS ALKALMAZÁSA LAPÁTRÁCSOK  

STATIKUS NYOMÁS NÖVELÉSE CÉLJÁBÓL 

Napjainkban a számítógéppel támogatott mérnöki tevékenységbe tartozó módszerek növekvő tudományági lefe-

dettsége és elterjedése figyelhető meg az ipar minden területén. Ennek oka, hogy a szimulációk által segített fo-

lyamat- és terméktervezés alkalmazásával jelentős idő-, költség- és kapacitás-csökkenés érhető el. A CAE egyik 

összetevője a CFD, amelynek hatékonyságát optimalizációs algoritmusokkal lehet tovább javítani. Egy ilyen tech-

nológia az inverz tervező eljárás, amelyben egy előre definiált, feltételek figyelembevételével alakítja ki az elvárt 

geometriát. A BME, Vasúti járművek, Repülőgépek és Hajók Tanszék által fejlesztett inverz tervező program se-

gítségével azt vizsgáltam, hogy egy lapátrácsban, adott belépő torlóponti nyomás, hőmérséklet és áramlás-irány, 

valamint kilépő statikus nyomás esetén a lapát szívott oldalán milyen leválás-közeli nyomáseloszlás esetén érhető 

el maximális nyomásnövekedés, axiális irányeltérítés és tömegáram. Munkám során kitértem annak vizsgálatára 

is, hogy az áramlási keresztmetszet szűkítése miként befolyásolja a vizsgált paramétereket. 

Kulcsszavak: numerikus áramlástan, inverz tervező módszer, leválás, optimalizáció, lapátrács 
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